A Multi-level Scalable Startup for
Parallel Applications

Abhishek Gupta, Gengbin Zheng and
Laxmikant V. Kalé

Parallel Programming Laboratory
University of lllinois at Urbana-Champaign

ROSS 2011
05/31/11

INTRODUCTION

High performance parallel machines with hundreds of
thousands of processors and petascale performance already
In use.

Parallel startup is challenging - how to start the application on
all the computation nodes

Involves two component

Parallel launching of appropriate processes on the given set of
processors and

Setting up communication channels to enable the processes to
communicate with each other after startup has completed
Our definition of the startup process is different with the ones
that only consider parallel launching
e.g. remote execution tools such as GXP and TakTuk

MOTIVATION

Absence of fast startup mechanisms =>obstacle to
the full utilization of high performance computing
power by the research community

Existing parallel startup mechanism such as those used by
Charm++ and OpenMPI take 2 to 4 minutes for startup for 8K
processors on Ranger

Tremendous SU usage just to startup the application

Startup time of 4 minutes for 16K processors — a single
experiment on 16K processors results in consumption of
more than 1K SUs for application startup.

Limits the number of experiments a researcher can perform
given the fixed allocation size.

CURRENT APPROACHES

Two types of approaches

Assumes the presence of special purpose
daemons running on compute nodes to facilitate
the startup process
e.g. Multi-purpose Daemons (MPD) used for MPICH jobs.
Drawback: daemons exist even when no MPI application is
running.
No special purpose daemons — use a launcher

Starts processes on compute nodes using existing daemons
such as rsh or ssh and then sets up communication channels

among them.

As we go up to high core counts, the centralized launcher
becomes a bottleneck and imposes scalability limitations

OUR APPROACH

Multi-level Scalable Startup : Fundamental 1idea - use of
multiple launchers which form a startup tree and reside on
different processors.

Makes the parallel startup process decentralized
Scales well with increasing number of processors.

Incorporate SMP-awareness to achieve faster startup.
Introduce the concept of batching of remote shell sessions
No special daemons (except rsh or ssh daemons) for startup

Discuss the trade-offs involved in parallel startup using a
theoretical model.

Starting up a Charm++ program on 16,384 cores of Ranger
with Ethernet as the underlying communication layer now
takes only 25 seconds.

SU consumption reduced by an order of magnitude compared with the
centralized startup.

Outperforms Open MPI startup by a factor of over 8 and MPICH2
startup (using Hydra) by a factor of 4 for 16K cores on Ranger

BASIC METHOD

Charmrun
« Launcher Time
 Process manager

Clients - processes which constitute

the parallel application. Charmrun receives
I-tuple from client

nodelist - set of processors where the

parallel application will be run

I-tuple — information sent by client to
charmrun, used to set up
communication channels between the
clients.

Node-table — Collection of all I-tuples

Charmrun

l

Charmrun starts a remote (|
session with client

Client connects back
with its I-tuple

Charmrun sends
node-table

Client

[lient Process Starts
and sends I-tuple

Basic process of parallel startup

SMP-AWARE STARTUP

Linear Startup
Charmrun perform a remote shell login to each processor.

SMP-aware startup

Motivation: Most supercomputers and even desktop systems
today have multi-core chips

Each node has many processor cores. e.g. 8-core, 16- core and 32-
core

|dea - create only one ssh session per node and spawn all
clients from the same ssh session.

Also useful when multiple processes need to be launched on
a single processor, such as in parallel application testing and
debugging.

Second phase of startup remains the same as the linear
startup.

MULTI-LEVEL STARTUP

Centralized startup is bottleneck
Charmrun has to start an ssh session with each node.

Charmrun has to receive a message containing an I-tuple from each
of the clients

Multi-level startup

Root
Charmrun

e B O O O
Charmruns

Parallel Processes

MULTI-LEVEL STARTUP

70
[nit Time
SSH Time =
60 + Wait Time

Time (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Child charmrun

Breakup of time spent in parallel startup using multi-level scheme for 4K processors

MULTI-LEVEL STARTUP - BATCHING

Variation in startup time small for less number of cores
becomes worse with increase in number of cores

Possibility of network congestion ?

Batching of remote shell sessions
Nodes assigned to a leaf charmrun divided into sets of fixed size.

Each leaf charmrun performs ssh to the nodes in current set,
waits for the clients to connect back and then performs ssh on the
next set.

Batch size = number of nodes in one ssh set

Reduces the total number of messages at any time
Better scalability

Introduces some serialization

MULTI-LEVEL STARTUP - BATCHING

70
Init Time
SSH Time ===
60 | Wait Time

Time (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Child charmrun

Time (s)

20

10

1

2 3 4 5 6 7 8 9

Init Time
SSH Time ===
Wait Time

10 11 12 13 14 15 16

Child charmrun

Breakup of time spent in parallel startup using multi-level scheme for 4K processors

ANALYSIS OF STARTUP SCHEMES

Consider a supercomputer with P processor cores and N nodes.

ﬂ.?}nea.r — Tinit + P X Tssh. + Tclient
+Tse-?1d + Elw + P X Trec'U

where

T, : Charmrun initialization time (includes getting the list of nodes to start e.g. reading
nodelist, starting a server port where clients can send I-tuples etc)

T.s, : Time taken by charmrun to start a rsh or ssh session with a remote node

T.ient - Time taken by the remote shell to create a new process at the remote processor and
load the program executable

T..., : Processor sending overhead at a client,
T, : Network latency for a message,

T.oc, : Message receiving overhead incurred by charmrun.

Tr:, — T@lnit + Tc: lient + Tﬁ end + Tn.. w

ANALYSIS OF STARTUP SCHEMES
Tlinea'r — Tc + P x (Tssh + Trecv)
TSﬂ/IP:Tc+NX(Tssh+CXTr‘ec:“v) C:P/N

Td—le'vel = d X (TC + k X (Tssh + E’ecv))

+]€ X (C _]-) X Tr’ec:v
k = branching factor and d = depth of the startup tree.

d = log, (N)

Tba,tched d—level — (d — 1) X (Tc + k X (Tssh + T’recv))
+(k/b) O (,Z;sh + ¢ X Trecv)

b = batch size

RUNTIME CAPABILITIES

Process Health and Recovery from Failures

Monitor Process health
Facilitate fault tolerance — restart protocol

Support for Scalable Interaction with Parallel
Application

Parallel debugging — CharmDebug

Online performance analysis

Simulation visualization - LiveViz

PERFORMANCE RESULTS: PLATFORM

TACC's Ranger Cluster

3,936 16-way SMP compute nodes providing 15,744 AMD
Opteron processors for a total of 62,976 compute cores

For core counts > 4K, executable cached in each
node's memory

Ethernet as the underlying communication network

PERFORMANCE OF DIFFERENT SCHEMES

oJv

|
Linear startup —+—
SMP-aware startup ---»---
Multi-level startup ---%---

200

150 7
@
Q
£
|_
100 "3(
T *
50 PP L -
............. woot
BEEPTITLL SIE

1k 2K 4K 8k
Number of cores

Startup time: Comparison among 3 startup schemes

EFFECT OF BATCHING

" l ' 600
Startup time © di
Average Startup time ---x---
60 |- % difference ---%--- /|
L 500
50 £
S 4400
#'. 8
-~ 40 | | _ :
% 0 1 300 5
¥. | /,_
30 F e s o
e 1 200
20 0 Tteee. 2 i
‘‘‘ ey !
Ml . 100
.............. ¥
.................... *--.--.--.-
0 *---. l l 0
2 * 8 16
Batch size

Variation in startup time with batch size for 4K processors

Comparison with Open MPI and MPICH2
(Hydra) startup

220 | Open MP] startup —+—]
MPICH2 startup ---x--- I
200 + Multi-leval startup ---%--- |

180
160
140
120

Time (s)

100

Number of cores

Startup time on Ranger: Open MPI vs. MPICH2 (Hydra) vs.
Multi-level Startup

RELATED WORK

MPD: Multi-purpose Daemon

Special purpose persistent daemons
Typically one instance per host in a TCP-connected network
Daemons are connected in a ring

To run an MPI program, mpirun first connects to the
daemon ring in order to start the parallel program and

then switches to manager ring in order to control the
program

SLURM
ALPS
STORM

RELATED WORK

Hydra

Default process management framework for starting MPI
processes for MPICH2-1.3 onwards

Uses existing daemons such as ssh, rsh, pbs, slurm and
sge to start MPI processes

ScELA

Targets multi-core clusters
Node Level Agent (NLA) for every node

An NLA is used to launch all processes on a node.
Similar to SMP-Aware startup

Since there is an NLA per node, there is an extra process per
node consuming processor cycles

RELATED WORK

Cplant

Concurrent launching strategies
Fast and scalable distributed machine administration and
parallel application development

Processes do not need to communicate with each other,
hence the second phase of parallel startup - setting up
communication channels is not needed

TakTuk , GXP

CONCLUSIONS

Scalable multi-level approach for startup of parallel
applications

Techniques to speed up

Parallel launching of appropriate processes on the given set
of processors and

Setting up communication channels
Concept of batching of remote shell sessions
SMP-awareness to further improve scalability.
Analysis using a theoretical model

Outperformed Open MPI startup by a factor of over 8
and MPICH2 startup by a factor of 4 for 16K

Complete solution to the startup of a parallel application
and its management during execution.

FUTURE WORK

Startup of parallel application using underlying high-
performance interconnects such as Infiniband.

Lazy establishment of communication channels in
the second phase of startup

On-demand connection establishment during execution.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant OCI-
0725070 for Blue Waters deployment, by the
Institute for Advanced Computing Applications and
Technologies (IACAT) at the University of lllinois at
Urbana-Champaign, and by Department of Energy
grant DE-SC0001845. We used machine resources
on the Ranger cluster (TACC), under TeraGrid
allocation grant TG-ASCO050039N supported by
NSF.

Questions

EFFECT OF BATCHING

70 , . 600 60 .
Startuptime 0 di Batch size =4 —+—
Average Startup time ---x--- 55 L x Batch size =8 ---x--- |
60 % difference ---%--- . Batch size = 16 ---%---
£ 3500
' 50 |-]
50 LI 5L ' ' |
S 4400
@ 40 - @
g ... S R
F 30F e FEC F
N ; 4 200
20 - o .. 0 & -
- 5 [
10 1 4 100
.............. *
........................ W
ot : ' 0 10 '
2 4 8 16 4K 8k 16K
Batch size Number of cores
Variation in startup time with Startup time vs. number of cores

batch size for 4K processors for different batch sizes

